Thursday, October 5, 2023

numeric limits

Overview
Maximum and minimum values of integral types such as int, short, long have been defined in <climits>.
Similarly, Maximum and minimum values for float, double are defined in <cfloat>. However these are defined as macros. For example, INT_MAX, INT_MIN, FLT_MIN,FLT_MAX etc.

Details
numeric_limits is a template class that defines functions such as min(), max() along with host of other functions that are related to arithmetic types. 
Specialized classes from numeric_limits are defined for fundamental arithmetic types such as intdouble. These methods in these classes can be used instead of  of macros. 
For example, numeric_limits<int>::max() can be used in place INT_MAX. These classes can be queried for minimum, maximum values and other properties such as number of digits, signed etc. 

The specialized classes are defined as below where xxx is a data types listed below. 
template<> class numeric_limits<xxx>;
Each specialized class will have is_specialized value set to true otherwise it's false.

Integral types
bool char  signed char
unsigned char wchar_t char16_t
char32_t short int unsigned short int
int unsigned int long int
unsigned long int long long int unsigned long long int

Floating point types
float double
long double

The following lists structure of the template class
template <class T> 
class numeric_limits 
{
public:

    /*    Properties    */

//true for all the types specialized from numeric_limits class. static constexpr bool is_specialized = false; //true if the type is signed. static constexpr bool is_signed = false; //true if the type is an integer. static constexpr bool is_integer = false; //true if the type uses exact representations. static constexpr bool is_exact = false; //true if the type has a representation for positive infinity. static constexpr bool has_infinity = false; //true if the type has a representation for a quiet (non-signaling) "Not-a-Number". static constexpr bool has_quiet_NaN = false; //true if the type has a representation for a signaling "Not-a-Number". static constexpr bool has_signaling_NaN = false; /* Denormalized values (representations with a variable number of exponent bits). A type may have any of the following enum values: 1. denorm_absent, if it does not allow denormalized values. 2. denorm_present, if it allows denormalized values. 3. denorm_indeterminate, if indeterminate at compile time. */ static constexpr float_denorm_style has_denorm = denorm_absent; //true if a loss of accuracy is detected as a denormalization loss, rather than an inexact result. static constexpr bool has_denorm_loss = false; /* Rounding style. A type may have any of the following enum values: 1. round_toward_zero, if it rounds toward zero. 2. round_to_nearest, if it rounds to the nearest representable value. 3. round_toward_infinity, if it rounds toward infinity. 4. round_toward_neg_infinity, if it rounds toward negative infinity. 5. round_indeterminate, if the rounding style is indeterminable at compile time. */ static constexpr float_round_style round_style = round_toward_zero; /* true if the type adheres to IEC-559 / IEEE-754 standard. An IEC-559 type always has has_infinity, has_quiet_NaN and has_signaling_NaN set to true; And infinity, quiet_NaN and signaling_NaN return some non-zero value. */ static constexpr bool is_iec559 = false; //true if the set of values represented by the type is finite. static constexpr bool is_bounded = false; /* true if the type is modulo. A type is modulo if it is possible to add two positive numbers and have a result that wraps around to a third number that is less. */ static constexpr bool is_modulo = false; /* For integer types: number of non-sign bits (radix base digits) in the representation. For floating types: number of digits (in radix base) in the mantissa. For example, same as FLT_MANT_DIG for float. */ static constexpr int digits = 0; /* Number of digits (in decimal base) that can be represented without change. For example, same as FLT_DIG for float. */ static constexpr int digits10 = 0; //Number of digits (in decimal base) required to ensure that values that differ are always differentiated. static constexpr int max_digits10 = 0; /* For integer types: base of the representation. For floating types: base of the exponent of the representation (equivalent to FLT_RADIX). */ static constexpr int radix = 0; /* Minimum negative integer value such that radix raised to (min_exponent-1) generates a normalized floating-point number. Equivalent to FLT_MIN_EXP, DBL_MIN_EXP or LDBL_MIN_EXP for floating types. */ static constexpr int min_exponent = 0; /* Minimum negative integer value such that 10 raised to that power generates a normalized floating-point number. Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP or LDBL_MIN_10_EXP for floating types. */ static constexpr int min_exponent10 = 0; /* Maximum integer value such that radix raised to (max_exponent-1) generates a representable finite floating-point number. Equivalent to FLT_MAX_EXP, DBL_MAX_EXP or LDBL_MAX_EXP for floating types. */ static constexpr int max_exponent = 0; /* Maximum integer value such that 10 raised to that power generates a normalized finite floating-point number. Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP or LDBL_MAX_10_EXP for floating types. */ static constexpr int max_exponent10 = 0; //true if trapping is implemented for the type during arithmetic operations. static constexpr bool traps = false; //true if tinyness is detected before rounding. static constexpr bool tinyness_before = false;
    /*    Methods    */

//Minimum finite value based on the type. For example, same as INT_MIN for int. static constexpr T min() noexcept { return T(); } /* Minimum finite value. For integral types: the same as min(). For floating-point types: implementation-dependent; generally, the negative of max(). */ static constexpr T lowest() noexcept { return T(); } //Maximum finite value based on the type. For example, same as INT_MAX for int. static constexpr T max() noexcept { return T(); } /* Machine epsilon (the difference between 1 and the least value greater than 1 that is representable). Equivalent to FLT_EPSILON, DBL_EPSILON or LDBL_EPSILON for floating types. */ static constexpr T epsilon() noexcept { return T(); } //Rqeturns the maximum rounding error of the given floating-point type static constexpr T round_error() noexcept { return T(); } //Returns the positive infinity value of the given floating-point type static constexpr T infinity() noexcept { return T(); } //Returns a quiet NaN value of the given floating-point type static constexpr T quiet_NaN() noexcept { return T(); } //Returns a signaling NaN value of the given floating-point type static constexpr T signaling_NaN() noexcept { return T(); } /* Returns the smallest positive subnormal value of the given floating-point type For types not allowing denormalized values: same as min(). */ static constexpr T denorm_min() noexcept { return T(); } }

Example
/* prints
Minimum value for int: -2147483648
Maximum value for int: 2147483647
int is signed: true
Non-sign bits in int: 31
int has infinity: false
*/
    
  cout << boolalpha;
  cout << "Minimum value for int: " << numeric_limits<int>::min() << endl;
  cout << "Maximum value for int: " << numeric_limits<int>::max() << endl;
  cout << "int is signed: " << numeric_limits<int>::is_signed << endl;
  cout << "Non-sign bits in int: " << numeric_limits<int>::digits << endl;
  cout << "int has infinity: " << numeric_limits<int>::has_infinity << endl;
This is expected in this example.

Included in Header file: <limits>








No comments:

Post a Comment